
CONTENT PROVIDED BY June 2013 | VisualStudioMagazine.com

ASP.NET
Web API:

End-to-End

Integrating the ASP.NET Web API into your 		
applications isn’t only the best way to add 		
AJAX to your Web-based applications, it’s also 	
the easiest. And that’s just the start of the story.

BY PETER VOGEL

http://VisualStudioMagazine.com
http://VisualStudioMagazine.com

C

M

Y

CM

MY

CY

CMY

K

ebook ad final.pdf 1 5/16/2013 4:08:41 PM

http://syncfusion.com/ebooks

ASP.NET Web API: End-to-End

TABLE OF CONTENTS

Introduction..1
Building the Right Services...1
Starting Your Project..3
Terminology..3
Tying Services to URLs...5
Creating Services Outside of ASP.NET.......................................5
Getting Data Using JavaScript...9
Updating Data..12
Using Your Service from .NET Clients......................................12
Testing Your Web API Service..13
Return to Routing..17
Sending the Result the Client Wants.......................................19
Errors in Your Routing Code...20

http://VisualStudioMagazine.com

1

ASP.NET Web API: 	
End-to-End

The ASP.NET Web API (“Web API” from here on) is the
latest technology built on the ASP.NET foundation (the
other two being ASP.NET Web Forms and ASP.NET MVC).
And because the Web API shares that foundation with

both of Microsoft’s platforms for creating Web applications, the
Web API provides a flexible, testable way to create applications
that execute in the browser while reaching back to integrate with
the server.

The Web API enables ASP.NET developers (both MVC and Web
Forms) to create an AJAX-enabled application—which means
creating applications with more responsive UIs and improved
scalability. In a Bring Your Own Device (BYOD) world, using the
Web API lets developers build multiple front-ends (for small-,
medium- and large-screen devices) with a variety of workflows
(from the focused mobile user to the intense desktop user) 	
supported by a single set of Web API services. And, because the
Web API is fully integrated with the ASP.NET framework, if you’ve
secured your Web site then you’ve secured the AJAX code in the
Web pages accessing a site’s services. But Web API services aren’t
limited to being used just by JavaScript running in a browser: Your
services, with the appropriate security included, can be called
from any .NET platform.

Building the Right Services
The first step in building a Web API application is to decide what
services you need. While it’s tempting to build services that are tied
to individual tables or objects (for example, creating a service that

Integrating the ASP.NET Web API into your applications
is not only the best way to add AJAX to your Web-based
applications, it’s also the easiest. And that’s just the start
of the story. BY PETER VOGEL

In a BYOD world,
using the Web API
lets developers build
multiple front-ends
with a variety of
workflows supported
by a single set of
Web API services.

2

ASP.NET Web API: End-to-End

updates the Customer table or provides access to the Customer
object) you should build your Web API services by thinking in terms
of business resources.

For example, a sales order that lists all the information about a
customer’s purchases is a business resource. However, the database
design and the object design to support that business resource
would include multiple entities: Customer, CustomerAddress, 	
SalesOrderHeader, SalesOrderDetail, Product and, potentially, 	
others. Creating services based around those entities would be
fatal to your applications. Your users need the business resource
and, in assembling that resource, any application would have to
make repeated trips to the server to fetch each of those entities.
Performance, especially for mobile users sending signals out over
the air, would suffer as the number of trips to the server increase.

While there are costs associated with sending large packets of
data, those costs are trivial compared to the transmission time
involved in getting a request to the server and getting a response
back. To put it another way: It will always take twice as long to
make two trips to your service; you probably can’t measure the
time to send twice as much data. In designing your services, 	
first consider the business resources you must support.

The second issue you want to consider in designing your 	
services is what a user will do with the business resource your
service provides. Users will, obviously, want to create a new sales
order, add purchases to a sales order and cancel a sales order.
Users are also going to want to go beyond those simple updates
to, for instance, perform “what-if” calculations that can answer
questions such as, “Can I afford to buy something else?” and,
“Will this change qualify for free shipping?” Your service must not
only support managing your business resources but also your
users’ activities.

What you shouldn’t do is design your services to support a 	
particular workflow—you shouldn’t assume specific activities take
place either before or after the service is called. This helps ensure
that your services will be reusable. At the very least, in a BYOD
world, workflows often vary from one kind of device to another:
The workflow you implement for a smartphone probably
concentrates on essential actions and doesn’t offer as many
options as the workflow you create for desktop users.

As an example, consider a service that allows an application to add
another product to a sales order. Don’t force the client to send a

While there are
costs associated
with sending large
packets of data,
those costs are
trivial compared to
the transmission
time involved in
getting a request
to the server
and getting a
response back.

3

ASP.NET Web API: End-to-End

complete copy of the sales order with any new order lines added—
that assumes the application has previously retrieved and stored a
copy of the sales order at the client (not likely in a mobile device). For
an action’s input, you should think in terms of the minimum data
required: a product name and the quantity that’s to be added to the
user’s currently open sales order, for example. For the return value, on
the other hand, you should consider returning all the data the user
might need. For the sales order update service, that means you should
consider returning a complete copy of the new, updated sales order
so the user can see the results of his changes.

Starting Your Project
A service needs a host: Some application that will listen for requests
and, when a request comes in, wake up your service to process the
request. The obvious host to use is IIS, in which case you begin 	
creating your Web API service by creating an ASP.NET or ASP.NET
MVC project. However, if you want to run you service on a computer
without IIS you can create your own host (not hard to do). In that
scenario, you can begin creating your Web API service by creating a
Windows Service, Windows Presentation Foundation, Console or
Windows Forms project.

Terminology
The term “Web API service” is often used to refer to two things:

•	A Web site that provides support for business activities
•	A single Web API class that supports some of the activities on the Web site
So someone might refer to “our customer service” meaning a Web site that 	

supports a wide variety of customer activities; that same person might also refer to
“our customer update service,” meaning the single Web API class on the site that
handles adding, updating and deleting customer data in the database (other Web
API classes in the same site might support customer credit checking, the customer
loyalty program and so on). In this paper the term “a service” will refer to a Web API
class. That means that a Web site will usually contain multiple Web API services.

The activities a service supports might be called “operations” by an SOA architect
but, in the ASP.NET world, they’re called “actions.” For every action there will be at
least one method but, as you’ll see, in the Web API you can associate multiple
methods with a single action. In this paper I’ll use the terms “action” and “method.”
A SOA architect would also say that actions are “invoked”—I’ll use the more
programmer-friendly “called.”

4

ASP.NET Web API: End-to-End

Before you can use Web API in any project, though, you need to
ensure the Microsoft ASP.NET Web API package is part of your
project. With Visual Studio 2012, the Web API package is included
automatically with ASP.NET MVC projects; with other project types or
in earlier versions of Visual Studio, you’ll need to use NuGet to add
the Web API package (you can add it from the Tools | Extension
Manager menu). If you’re not sure if you have the ASP.NET Web API
included in your project, the easiest way to check is by right-clicking
on your project in Solution Explorer and selecting the NuGet menu
choice. Then, in the Manage NuGet Package dialog, select Installed
packages and do a search for “webapi.” If the Web API has been
added, it will appear in the resulting list.

Once the Web API package is installed, to add a Web API ser-
vice to your project, you can just right-click on your project and
select Add New Item. It’s a good idea, however, to create a folder
in your project and right-click on it to add your service to that
folder. As the base for your service, you can use the Web API
Controller Class template you’ll find in the Web node of the Add
New Item dialog. However, using the template creates a class
with a lot of default code that you’ll just have to delete later.
Adding an ordinary class file and having it inherit from the 		
System.Web.Http.ApiController class gives you a Web API service
without that extra code. Whichever way you create your service,
when you name your Web API class make sure the name ends
with the word “controller” (for example, the case study for this
paper uses a controller called SalesOrderController).

This example creates a Web API controller called Customer:
using System.Web.Http;

namespace WebApplication1

{

 public class SalesOrderController : ApiController

 {

The simplest Web API method (the equivalent of the “Hello, World”
program) just returns an HTTP status code and looks like this:
public HttpResponseMessage Get()

{

 HttpResponseMessage hrm = new HttpResponseMessage(HttpStatusCode.OK);

 return hrm;

}

It’s a good idea to
create a folder in
your project and
right-click on it to
add your service to
that folder.

5

Tying Services to URLs
Your next step is to tie your service to a URL using a routing rule.
A routing rule consists of a template that specifies the format of
the URLs to which the rule applies and which controller is to 	
handle the request. The template also specifies where in the 	
URL find values that are to be passed to actions in your service
can be found.

 In an ASP.NET MVC 4 application, you add a routing rule to the
WebAPIConfig class in the App_Start folder; in ASP.NET MVC 3 or
ASP.NET, you put routing rules in the Application_Start method of
the Global.asax file). If you’re creating your own host, you add
routing rules to the code that defines your host. The code is almost
identical in all of these environments.

In ASP.NET MVC 4, the code for the default rule supplied by the
Web API temple in the WebAPIConfig class looks like this:
public static void Register(HttpConfiguration config)

{

 config.Routes.MapHttpRoute(

Creating Services Outside of ASP.NET

If you aren’t using an ASP.NET Web Forms or ASP.NET MVC project, you must also
create your own host in your project. You could add this code to an event in a form,
for instance, to have it host your SalesOrder controller:
 private HttpSelfHostServer shs;

 HttpSelfHostConfiguration hcfg =

 new HttpSelfHostConfiguration("http://localhost:1867/MyServices");

 shs = new HttpSelfHostServer(hcfg);

 shs.OpenAsync();

The URL passed to the HttpSelfHostConfiguration specifies the URL you should use
to access your service. When your host is shut down, you should close your service
connection and dispose of it:
 shs.CloseAsync().Wait();

 shs.Dispose();

If you’re creating your own host, make sure your host is your project’s startup item.

ASP.NET Web API: End to End

ASP.NET Web API: End-to-End

6

 name: "DefaultApi",

 routeTemplate: "api/{controller}/{id}",

 defaults: new { id = RouteParameter.Optional }

);

}

In an ASP.NET application or an ASP.NET MVC 3 application, the
equivalent code in the Application_Start method of the Global.asax
file looks like this:
 GlobalConfiguration.Configuration.Routes.MapHttpRoute(

 name: "DefaultApi",

 routeTemplate: "api/{controller}/{id}",

 defaults: new { id = RouteParameter.Optional }

);

If you’re creating your own host, you’d add your routing code
following the line where you instantiated the HttpSelfHost
Configuration object. That code would look like this:
hcfg.Routes.MapHttpRoute(

 name: "DefaultApi",

 routeTemplate: "api/{controller}/{id}",

 defaults: new { id = RouteParameter.Optional }

);

The literal text “api” in the routeTemplate parameter forces all
URLs that request your service to have the text “api” after the
server and site name that your host establishes. So, for example, a
Web site with the URL phvis.com would use a URL that begins
phvis.com/api to request your services.

In the routeTemplate, the word “controller” inside the braces
({controller}) means that the text following “api” must be the name
as one of your controllers (though without the “controller” suffix).
The “id” inside the braces means that any part of the URL following
the controller name will be assigned to the name “id.” In the rout-
ing rule, the default parameter specifies that the id parameter can
be omitted from the URL requesting your service.

The simplest possible service has a single action, named Get.
When you issue a URL from the address bar of your browser,
you’re using the HTTP Get verb and, by default, the Web API looks
for methods with the same name as the HTTP verb used with the
request. With your routing rule in place, you can test a SalesOrder-
Controller service by typing this into the address bar of any Web
browser:
http://localhost:1867/api/salesorder

The literal text
“api” in the
routeTemplate
parameter forces all
URLs that request
your service to have
the text “api” after
the server and site
name that your host
establishes.

7

ASP.NET Web API: End-to-End

If you’ve done everything right, your browser should display a
blank page—not very exciting but you know that your service is
accessible.

If having a method name that duplicates the name of an 	
HTTP verb violates your coding convention, you can use the 	
HttpGet attribute to flag the method you want to use to respond
to HTTP Get requests. The following code creates a method called
RetrieveSalesOrder in the Customer controller that will handle Get
requests:
public class SalesOrderController : ApiController

{

 [HttpGet]

 public void RetrieveSalesOrder()

 {

Unfortunately, the default routing rule can also be used with
URLs that can have invalid controller names embedded in them 	
(or, in an ASP.NET MVC application, the names of controllers that
aren’t Web API controllers). To reduce those problems, the default
routing rule begins with the string “api” so that only URLs
containing that string will be used with your Web API services.
Even with that convention, because the default rule is so flexible, as
the number of rules in your application increases it can be difficult
to predict which rule will be used to process a request’s URL. In 	
addition, the default routing rule also tightly couples URLs to your
Web API Services. If you rename your Web API controller then any
clients using URLs with the old controller name will stop working.

To avoid those problems, it’s a better idea to use more explicit
routing rules that omit controller name from the routing rule’s tem-
plate (this also eliminates the need for the “api” prefix). Routing rules
can, instead, set your controller’s name in the default values parame-
ter. As an example, the following routing rule applies only to URLs
beginning with the word “SalesOrder” (still following the server and
site name, of course). This rule specifies the controller value in the
default parameter. This example is for an ASP.NET Web Forms app:
GlobalConfiguration.Configuration.Routes.MapHttpRoute(

 name: "SalesOrderGet",

 routeTemplate: "SalesOrder",

 defaults: new { Controller = "SalesOrder" }

);

This new rule would apply to a URL like http://localhost:49695/
salesorder.

The default routing
rule begins with
the string “api” so
that only URLs
containing that
string will be
used with your
Web API services.

8

ASP.NET Web API: End-to-End

If you were to change the name of your Web API controller to, for
example, SalesOrderManagementController, you would only need to
change the value in the default parameter—existing URLs would
continue to work. This example is for an ASP.NET MVC 4 application:
config.Routes.MapHttpRoute(

 name: "SalesOrderGet",

 routeTemplate: "SalesOrder",

 defaults: new { Controller = "SalesOrderManagement" }

);

Routing rule templates also allow you to assign names to 	
values passed in a URL so that those values can be passed—as
parameters—to your actions. This template, for instance, specifies
that the part of the URL following the text “SalesOrder” is to be
called “SalesOrderId”:
GlobalConfiguration.Configuration.Routes.MapHttpRoute(

 name: "SalesOrderGet",

 routeTemplate: "SalesOrder/{SalesOrderId}",

 defaults: new { Controller = "SalesOrder" });

To access these parameters you just need to use the name for a
parameter to your method, like this:
public class CustomerController : ApiController

{

 [HttpGet]

 public void RetrieveSalesOrder(string SalesOrderId)

{

This process of binding URL values to parameters is extremely flexi-
ble. If, for example, your method has a parameter that doesn’t have a
value specified, your parameter will be set to null. Therefore, it’s a
best practice to have your method parameters use data types that
can be set to null (string, for example). If your method doesn’t use a
value from the URL that’s specified in the routing rule template, the
value from the URL is simply discarded. The process will also attempt
to perform any data conversions required by your method parame-
ters. If, for example, you specify that your method parameter is an
integer, the model binder will attempt to convert the value from the
URL into an integer (and throw an exception if it can’t).

In your URL you can combine values and text in any combination
that makes sense for your service. However, as the number of your
services increases, it can be difficult to be sure which rule applies to
which URL (there’s more about routing rules on p. 17).

Routing rule 	
templates allow
you to assign
names to values
passed in a URL so
that those values
can be passed—as
parameters—to
your actions.

9

ASP.NET Web API: End-to-End

Getting Data Using JavaScript
Once you’ve created a basic Web service, you can call it from
JavaScript in your Web page. The simplest way to do that is to tie a
JavaScript function to the onclick event of a button. The following
example shows the HTML you’d put in an ASP.NET MVC view to
define a button that calls a JavaScript function named GetSalesOrder.
The sample HTML also includes textboxes for displaying a sales
order’s Id and Priority. Below the button, a span element displays
messages from your JavaScript function:
@Html.EditorFor(m => m.SalesOrderId)

@Html.EditorFor(m => m.Priority)

<input type="button" value="Retreive"

 onclick="GetSalesOrder();" />

In an ASP.NET application, a similar form would look like this:
<asp:TextBox ID="SalesOrderID" runat="server"></asp:TextBox>

<asp:TextBox ID="Priority" runat="server" text="1"></asp:TextBox>

<input id="Button1" type="button" value="Retrieve" onclick="GetSalesOrder()"/>

<asp:Label ID="StatusMessage" runat="server"></asp:Label>

The next step is to create the JavaScript function that will issue a
request to the URL of your Web API service. This example uses the
routing rule (described earlier) that includes a value for the sales
order Id in the URL (this code also assumes that you’ve added
jQuery to your project and to this page so that you can use
the jQuery getJSON function to call the service):
<script>

function GetSalesOrder()

{

 $.getJSON('SalesOrder/' + $(\"#SalesOrderID").val(),

 function (soDTO)

 {

 alert(soDTO.SalesOrderId);

 }

);

 }

</script>

In an ASP.NET Web Forms application you might want to 	
consider enhancing that function to call any client-side code on
the page generated by your Validators before you send data to
the server:

This process of
binding URL values
to parameters
is flexible.

10

ASP.NET Web API: End-to-End

function GetSalesOrder()

{

 if (Page_ClientValidate())

 {

 $.getJSON('SalesOrder/' + $("#SalesOrderID").val(),

 function (soDTO)

 {

 alert(soDTO.SalesOrderId);

 }

);

 }

}

This function builds the URL that’s passed as the first parameter
to the getJSON function using the name of the controller and
whatever value is currently in the SalesOrderID text box. When the
service returns an object to the getJSON method, that object will
be passed to the function in the second parameter to the getJSON
method. This example just displays a single property from the
object returned from the service—in real life you’d use some more
jQuery to insert the data retrieved into your page.

The next step is to create the service method that will return a
sales order object. With the Web API, that code can be very simple
to write—whatever code you would use in any other application to
retrieve, create and return the appropriate object. Because your
object will combine the results of several different server-side
objects and tables, you should return a Data Transfer Object (DTO)
that holds all of the data the client needs.

This example has the method’s return type set to SalesOrderDTO
and returns the object created in the method:
[HttpGet]

public SalesOrderDTO RetrieveSalesOrder(string SalesOrderId)

{

 SalesOrderDTO soDTO = new SalesOrderDTO();

 // ... Set properties on soDTO

 return soDTO;

}

The getJSON method is just a quick way to call a more flexible
jQuery function: the AJAX function. The equivalent AJAX version of
the getJSON method just shown only requires one new parameter
that holds the function to execute when an error occurs. Here’s that

When the service
returns an object 	
to the getJSON
method, that object
will be passed to
the function in the
second parameter
to the getJSON
method.

11

ASP.NET Web API: End-to-End

AJAX method, using named parameters to make the code easier to
read:
function GetSalesOrder()

{

 $.ajax({

 url: 'SalesOrder/' + $("#SalesOrderID").val(),

 success: function (soDTO, status)

 {

 if (status == "success")

 {

 alert(soDTO.SalesOrderId);

 }

 },

 error: function (err)

 {

 $("#StatusMessage").text(err.statusText);

 }

 });

 }

Using the AJAX function positions you to perform updates with
your service.

On the server, to return your object, you can use the 		
HttpResponseMessage to give you more control over the status
code returned by your method. Returning the HttpResponseMessage
object from your method means that the business object your
code creates will need to be put in HttpResponseMessage
object’s Content property as a JSON object. This example returns
the SalesOrderDTO inside an HttpResponseMessage:
[HttpGet]

public HttpResponseMessage RetrieveSalesOrder(string SalesOrderId)

{

 SalesOrderDTO soDTO = new SalesOrderDTO();

 // ... Set properties on soDTO

 HttpResponseMessage hrm = new HttpResponseMessage(HttpStatusCode.OK);

 hrm.Content = new ObjectContent<SalesOrderDTO>(soDTO,

 new JsonMediaTypeFormatter(),

 new MediaTypeWithQualityHeaderValue("application/jso"));

 return hrm;

}

Because your object
will combine the
results of several
different server-side
objects and tables,
you should return a
DTO that holds all
of the data the
client needs.

12

ASP.NET Web API: End-to-End

Now, if your code discovers, for example, a security issue when
preparing the DTO to be sent to the user, you can return an
HttpStatusCode.Forbidden in your HttpResponseMessage.

Updating Data
While the ajax method defaults to the HTTP Get verb, you can 	
specify other verbs when making a request and, as a result, call

The getJSON 	
method is just a
quick way to call a
more flexible jQuery
function: the AJAX
function.

Using Your Service from .NET Clients
You’re not restricted to calling your services from JavaScript. If
you use NuGet to add the Web API Client to a .NET project, 	
you can call your services from that project’s code through the
HttpClient object.

The following code creates the HttpClient object and then
sets its BaseAddress property to the service’s Web site. The
code then specifies that it wants to receive JSON objects by
adding an entry to the default headers sent with the request. 	
It then passes the rest of the URL for the request through the
client’s GetAsync method to call the service. The methods on
the HttpClient are all asynchronous so this code uses the await
keyword to pause the client until the service responds:

HttpClient hc = new HttpClient();
SalesOrderDTO soDTO;
hc.BaseAddress = new Uri("http://www.phvis.com");
hc.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("application/json"));
var resp = await client.GetAsync("SalesOrder/A123");

Once you do get a response you can check that everything went
well by calling the response object’s EnsureSuccessStatusCode as
the following code does (EnsureSuccessStatusCode throws an
exception if it finds a bad status code in the response). Finally,
the code extracts a SalesOrderDTO object from the response’s
Content property:

resp.EnsureSuccessStatusCode();
HttpResponseMessage soDTOHold =
 await response.Content.ReadAsAsync<SalesOrderDTO>();
soDTO.CopyFrom(soDTOHold);

13

ASP.NET Web API: End-to-End

other methods in your service. For example, to support deleting
data on the server, you can use the HTTP Delete verb in your jQuery
AJAX function. In your service you just need to define a method
called Delete and the Web API will use that method to satisfy the
AJAX request. Rather than return an object, this method returns a
string formatted as XML, which reports that the order was deleted:
public HttpResponseMessage Delete(string SalesOrderId)

{

 // ... Find and delete a sales order using the SalesOrderId

 HttpResponseMessage hrm = new HttpResponseMessage(HttpStatusCode.OK);

 hrm.Content = new ObjectContent<string>(SalesOrderId + " deleted",

 new XmlMediaTypeFormatter(),

 new MediaTypeWithQualityHeaderValue("text/plain"));

 return hrm;

}

In the jQuery AJAX function you specify the verb to use with the
function’s type parameter. The following code uses the Delete verb

Testing Your Web API Service, continued on page 14

If you want to ensure your service is working reliably you can, of course, create a test
client and use its UI to test your Web service. It’s considerably easier, however, to
create a Visual Test project to test your service’s behavior.

Creating a Test project to support building a Web API service is just like creating
any other Test project: right-click on your solution, select Add New Project and, from
the Test node in the Add New Project Dialog, select Unit Test Project. Once the Test
project is added, add to it a reference to your Web API project. Rename the default
UnitTest1 file to something more meaningful and add a using statement for your
Web API project. As with your other Web API projects, add the Web API NuGet
package but you’ll also need to add a separate reference to System.Web.Http.

This code, at the top of a TestClass, instantiates a controller:
[TestClass]
public class SalesOrderTest
{
 [TestMethod]
 public void TestRetrieve()
 {
 SalesOrderController soc = new SalesOrderController();

14

ASP.NET Web API: End-to-End

and, in the success method, extracts the returned message from
the XML document returned by the services. Because I specified
string as my ObjectContent type, the code looks for an element
called string in the XML document:
$.ajax(

 {

 url: 'SalesOrder/' + $("#SalesOrderID").val(),

 type: 'Delete',

 success: function (respMsg, status)

 {

 var resp = $.parseXML(respMsg);

 var xml = $(resp);

 var elm = xml.find("string");

 $("#StatusMessage").text(elm.text());

 },

 error: function (err)

 {

 $("#StatusMessage").text(err.statusText);

 }

Testing Your Web API Service, continued

In your test methods, you can instantiate your controller (using its full name with
the “controller” suffix) and call its methods like any other class. The only interesting
code in your Test methods is the line to extract the Content property of your 	
HttpResponseMessage and convert it into something testable.

This code, as an example, calls the RetrieveSalesOrder method on the SalesOrderController
and accepts a result in an HttpResponseMessage. Since the RetrieveSalesOrder method
puts a JSON version of the SalesOrderDTO class in the HttpResponseMessage, this code
using the JsonConvert object to recreate the SalesOrderDTO object. With the SalesOrderDTO
object retrieved, the code tests to see if the method returned the correct result:
 HttpResponseMessage hrm;
 hrm = soc.RetrieveSalesOrder("A123");
 SalesOrderDTO so = JsonConvert.DeserializeObject<SalesOrderDTO>
	 (hrm.Content.ReadAsStringAsync().Result);
 Assert.AreEqual("A123", so.SalesOrderId);

You can now run this method from Visual Studio to see if the method finds and
returns the right object. More important, as your Web API service continues to evolve,
you can run this test repeatedly to make sure that your service method continues to
work as you intended.

15

ASP.NET Web API: End-to-End

 }

);

To handle creating a new object, you’ll need to send more than
a few pieces of data embedded in a URL—typically you’ll need to
send a whole object (and extend your routing rules, as described
on p. 17). When you’re sending a large amount of data the best
approach is to use the HTTP Post verb, which puts your data in the
body of the message sent to the server. While jQuery’s AJAX
function supports the Post verb, jQuery also has a dedicated
function called post for moving data to the server.

To use the post function, you must first assemble the data into an
object you can send to the service. In most cases, your application
will have retrieved the object that you’re now creating (if only to
make sure that the entity doesn’t already exist at the server). You
can just reuse that object in your client. This example, for instance,
moves the SalesOrderDTO object to a client-side variable as part of
the success function:
var soDTOHold;

function GetSalesOrder()

{

 $.ajax(

 {

 url: 'SalesOrder/' + $("#SalesOrderID").val(),

 type: 'GET',

 success: function (soDTO, status)

 {

 soDTOHold = soDTO;

 },

 error: function (err)

 {

 $("#StatusMessageh").text(err.statusText);

 }

 });

The following code updates the SalesOrderDTO Priority 	
property with data from the textbox in the form. It then uses 	
the jQuery post function to send the updated object to the service.
The SalesOrderDTO is passed in the post function’s second 	
parameter. The third parameter passed to the post method is the
function to run when the result is returned from the server, which
will be another XML-formatted message:

To use the post
function, you must
first assemble the
data into an object
you can send to
the service.

16

ASP.NET Web API: End-to-End

soDTOHold.Priority = $("#Priority").val();

// ... Update other properties on the DTO from the form

$.post('SalesOrder',

 soDTOHold,

 function (respMsg, status) {

 var resp = $.parseXML(respMsg);

 var xml = $(resp);

 var elm = xml.find("string");

 alert(elm.text());

 });

On the server, you need a method whose name either begins
with the word “Post” or is decorated with the HttpPost attribute.
This example uses the attribute:
[HttpPost]

public HttpResponseMessage UpdateSalesOrder(SalesOrderDTO soDTO)

{

 // ... Code to update the database with information from soDTO

 HttpResponseMessage hrm = new HttpResponseMessage(HttpStatusCode.OK);

 return hrm;

}

Once you start posting data, you ca (if you wish) send all the data
in the form displayed in your browser. This example assumes the
form that’s displaying the data is called “form1” and sends it, as an
object, to the service. This example also includes an error function:
function UpdateSalesOrder() {

 $.post('SalesOrder', $('#form1').serialize())

 .success(function () {

 var resp = $.parseXML(respMsg);

 var xml = $(resp);

 var elm = xml.find("string");

 $("#StatusMessag").text(elm.text());

 })

 .error(function (err) {

 $("#StatusMessage").text(err.statusText);

 });

}

The service method that processes this request will need a
parameter with properties whose names correspond to the names
assigned to the textboxes and other controls on the form.

On the server, you
need a method
whose name either
begins with the
word “Post” or is
decorated with the
HttpPost attribute.

17

ASP.NET Web API: End-to-End

Return to Routing
However, to make this post code work, you’ll need to revisit your
routing rules. The original routing rule, for example, applies to URLs
that begin with the word “SalesOrder” and also contain another
component called SalesOrderId:
config.Routes.MapHttpRoute(

 name: "SalesOrderGet:",

 routeTemplate: "SalesOrder/{SalesOrderId}",

 defaults: new { Controller = "SalesOrder" });

This rule won’t work with the route that the post function uses
because the post’s URL doesn’t include a SalesOrderId component.
One solution is to make this route more flexible by specifying in
the defaults parameter, that the SalesOrderId is optional:
config.Routes.MapHttpRoute(

 name: "SalesOrderGet",

 routeTemplate: "SalesOrder/{SalesOrderId}",

 defaults: new { Controller = "SalesOrder",

 SalesOrderId = RouteParameter.Optional });

However, the more flexible your routing rules are, the more 	
difficult it is to determine which rule is going to be used with any
request URL. A better solution to handling your Post request is to
add a second rule (with a new name) and a template that matches
the URL actually used by the post method:
config.Routes.MapHttpRoute(

 name: "SalesOrderPost",

 routeTemplate: "SalesOrder",

 defaults: new { Controller = "SalesOrder"});

As the number of actions in your services increase, you may 	
start running out of HTTP verbs. There are four HTTP verbs that 	
are commonly used in most services to perform standard 		
business activities:

•	Get: To retrieve data
•	Post: To create a new entity
•	Delete: To remove an entity
•	Post: To update an entity (technically, to completely replace the

entity at the server with the data sent from the client)
While it isn’t common, some services use the Patch verb to apply

updates that change only some of the data in an object or table.
You can probably already see that you’ll need more than four
actions in your service. However, there are two ways that you can
add additional actions.

Once you start
posting data, you
can (if you wish)
send all the data in
the form displayed
in your browser.

18

ASP.NET Web API: End-to-End

The first method is through method and route overloading. In
the same way that you can have multiple methods with the same
name, provided each method has a different parameter list, you
can have multiple routing rules for the same HTTP verb, each with a
different number of components (or arrangement of components)
in the URL. For instance, to retrieve all the sales orders for a particu-
lar month, you can specify a URL like this:
http://localhost:1867/SalesOrder/July/2013

This URL would be handled by a routing rule that also has three
components in its template:
config.Routes.MapHttpRoute(

 name: "SalesOrderGet",

 routeTemplate: "SalesOrder/{Month}/{Year}",

 defaults: new { Controller = "SalesOrder" });

The method that would be called could still be called Get or
RetrieveSalesOrder but would have two parameters corresponding
to the named values in the routeTemplate:
public HttpResponseMessage Get(string month, string year)

{

As you add rules, however, it’s possible to add a new rule that
prevents an existing rule from being used. For instance, you could
specify that the year is optional when retrieving all the sales orders
for a month—your service would just default to the current year if
a year isn’t provided. The routing rule is easy to write:
config.Routes.MapHttpRoute(

 name: "SalesOrderGet”,

 routeTemplate: "SalesOrder/{Month}/{Year}",

 defaults: new { Controller = "SalesOrder",

 Year = RouteParameter.Optional });

The problem is that your service can now accept two URLs that
look alike, at least as far as the number of components in each
URL. The URL for requesting a sales order and the URL for request-
ing the sales for a month in the current year both begin with the
string “SalesOrder” and have only one other component:
http://localhost:1867/SalesOrder/A123

http://localhost:1867/SalesOrder/July

The Web API has rules for deciding which routing rule to apply in
these situations but it’s probably not a good idea to count on them.
You’ll find it much easier to determine which URLs will call which
actions in your service if you give the different URLs unique text:

The more flexible
your routing rules
are, the more 	
difficult it is to
determine which
rule is going to be
used with any 	
request URL.

19

ASP.NET Web API: End-to-End

http://localhost:1867/SalesOrder/A123

http://localhost:1867/SalesOrdersForMonth/July

The second option for extending your service beyond the HTTP
verbs is to specify the name of your action in your routing rule. The 	
following rule specifies the name of the action to use in its default. It
also uses a new parameter (constraints) to say that this rule only applies
to Get requests. This example would be used in a self-hosting project:
hcfg.Routes.MapHttpRoute(

 name: "SalesOrderPost",

 routeTemplate: "SalesOrder",

 defaults: new { Controller = "SalesOrder\{SalesOrderId}",

 Action="EstimateSalesOrderPrice"},

 constraints: new { httpMethod =

 new HttpMethodConstraint(HttpMethod.Get) });

This rule would route requests to this method:
public HttpResponseMessage EstimateSalesOrderPrice(string SalesOrderId)

{

Sending the Result the Client Wants
So far, this sample service has returned JSON objects and XML
documents. In both cases, the service decided what kind of data 	
to return to the client. However, the Web API allows the client to
indicate the kind of data that it wants and for the Web API to
decide what to return based on the client’s request (a process
called “content negotiation” or “conneg” for short). If you’re willing
to give up some control over the results your service sends, you
can support content negotiation by writing less code.

The first step is for the client to specify—as part of requesting
your service—what kind of response it wants. When using the post
function, for instance, a client can specify a type parameter that
indicates the kind of data to be returned. This example specifies
that XML should be returned from the service and parses the result
from the service as XML:
$.post('SalesOrder',

 soDTOHold,

 function (respMsg, status) {

 var resp = $.parseXML(respMsg);

 var xml = $(resp);

 var elm = xml.find("SalesOrderDTO");

 alert(elm.text());

As you add rules,
it’s possible to
add a new rule
that prevents an
existing rule from
being used.

20

ASP.NET Web API: End-to-End

 },

 "xml");

If your service always returns a JSON object then your service
isn’t going to work well with this client.

However, rather than specifying the return type for the data, you
can let the Web API decide on the format of the data returned.
Your action will still return an HttpResponseMessage to the client
but the Web API will decide on the format of the data put into the
HttpResponseMessages object’s Content property. You just need
to call the CreateResponse method on the original request sent to
your service; you can access the request through the Request
property built into your service controller. The CreateResponse
method is a generic method so you need to specify the type of the
object you’re returning and, in addition, you must pass the method
status code for the request and the data to format.

Errors in Your Routing Code
Routing rules can look mysterious because they make extensive use of anonymous
objects. In the following example, for instance, the defaults parameter is set by an
anonymous object that’s assigned two properties (Controller and Action) that are imme-
diately set to string values (“SalesOrder\{SalesOrderId}” and “EstimateSalesOrderPrice”):
hcfg.Routes.MapHttpRoute(

 name: "SalesOrderPost",

 routeTemplate: "SalesOrder",

 defaults: new { Controller = "SalesOrder\{SalesOrderId}",

 Action="EstimateSalesOrderPrice"});

You can add any properties you want to an anonymous object (so called because there’s
no class name between the keyword new and the brace where the properties are
specified)—all you have to do is make up a name for your property and set it to a value. It’s
a flexible system that lets the Web API support almost any routing rule you might need.

However, because you’re making up the property names as you type them in, you
don’t get any IntelliSense support. This opens you up to “spelling counts” errors where
you meant to create a property called “Action” but mistyped and created a property
called “Acion.” In addition, as the example shows, the properties in these objects are
often set to strings that aren’t checked by the compiler. Here, again, you can make
typing errors that will cause your application to fail.

The best advice here is: If your service methods aren’t being called when you expect
them to be, the first bug you should check for is spelling errors in your routing rules.

21

ASP.NET Web API: End-to-End

This example returns a status code of OK and a SalesOrderDTO
object in whatever format the client requested:
public HttpResponseMessage Get(string SalesOrderId)

{

 // ... Code to retrieve sales order data

 HttpResponseMessage hrm =

 this.Request.CreateResponse<SalesOrderDTO>(HttpStatusCode.OK, soDTO);

 return hrm;

}

Now, the various clients for your service can specify a variety of
data formats and you can deal with all of them.

While this article has covered all of the basics for creating an
ASP.NET Web API service, there’s more that you can do—it’s a rich
environment. For example, if you have processing that crosses
many services, you can centralize that processing in message 	
handlers that manipulate the messages that pass between the 	
client and the service. Content negotiation is supported through
media formatters and, if you want to support a new response 	
format, you can create your own custom media formatters. But
everything you require to create the services you need to support
typical business applications is right here. VSM

Peter Vogel has been developing ASP.NET application since .NET Framework
1.0 was released. Peter also facilitates the design of Service Oriented
Architectures with his clients, in addition to helping his clients implement
those architectures and build applications that take advantage of them. 	
In his parallel career as a technical writer, Peter writes the Practical .NET
column for Visual Studio Magazine Online and the Patterns in Practice
column for MSDN Magazine Online.

If you’re willing to
give up some
control over the
results your service
sends, you can
support content
negotiation by
writing less code.

http://VisualStudioMagazine.com

